

87045 LIMOGES Cedex

Phone :+33 05 55 06 87 87 - Fax :+33 05 55 06 88 88

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

DPX³ 250 HP S10 electronic (display version) with earth leakage circuit breakers

CONTENTS	PAGES
1. USE	1
2. RANGE	1
3. DIMENSIONS AND WEIGHTS	1
4. OVERVIEW	5
5. ELECTRICAL CONNECTIONS	5
6. ELECTR. AND MECH. CHARACTERISTICS	7
7. ELECTRONIC PROTECTION S10	9
8. CONFORMITY	11
9. EQUIPMENTS AND ACCESSORIES	12
10. CURVES	15

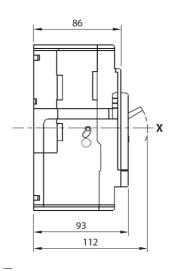
1. USE

DPX³ HP platform has been developed to give a new solution of protection devices for a more precise approach in power installations in order to offer the correct answer for different project needs.

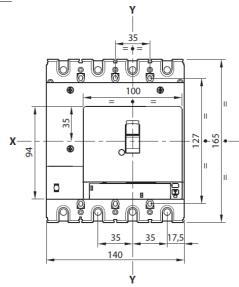
DPX³ HP platform provide a complete project approach in premium market segment, offering a range completely suitable for high power application with high performance breakers in compact dimensions and at a competitive costs.

DPX³ S10 is a modern approach for electronic protection units that magnifies all flexibility allowed by technology.

2. RANGE

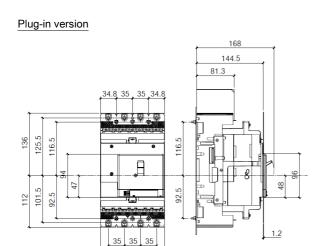

	DPX ³ 250 HP S10 electronic (display version) + earth leakage version			
	36 kA 50 kA			
In (A)	4	.P		
40	423415 423435			
100	423416	423436		
160	423417	423437		
250	423418	423438		

	DPX ³ 250 HP S10 electronic (display version) + earth leakage version with measurement function			
	36 kA 50 kA			
In (A)	4P			
40	423475	423495		
100	423476 423496			
160	423477 423497			
250	423478 423498			

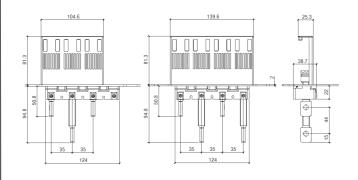

3. DIMENSIONS AND WEIGHTS

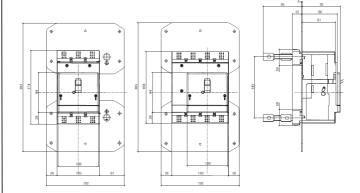
3.1 Dimensions

Lateral view

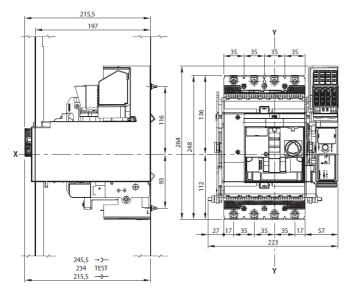


Frontal view

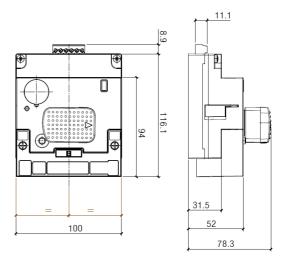



Reference(s):

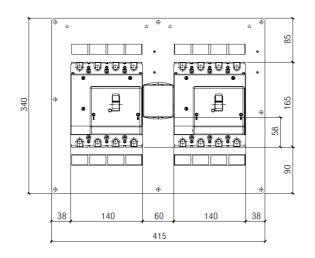
from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;



Rear terminals

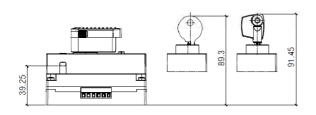


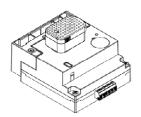
Draw-out version

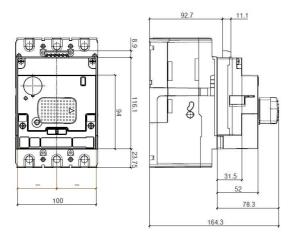


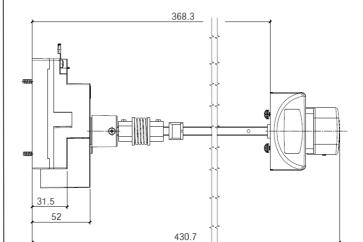
Direct rotary handle

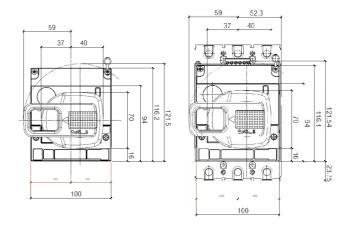
Interlock

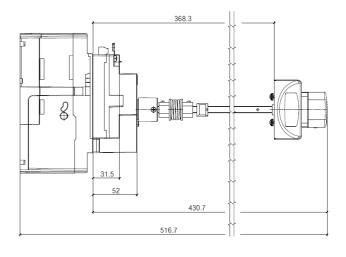

(for rear plate interlock dimension, see relative instruction sheet)

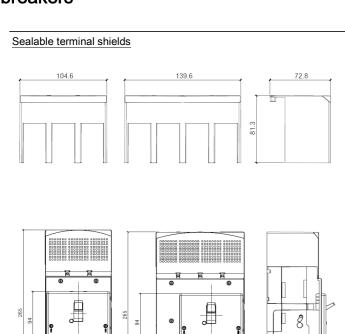


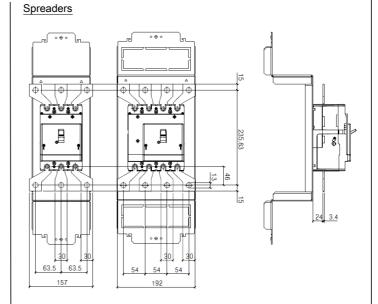

Reference(s):

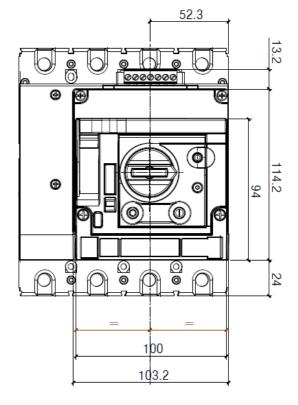

Vari-depth rotary handle


from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

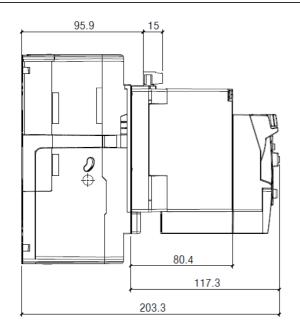


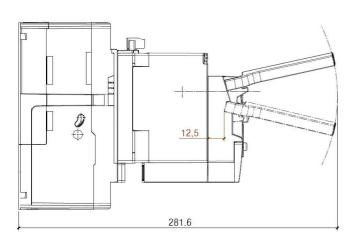


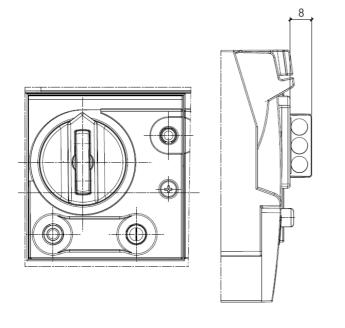


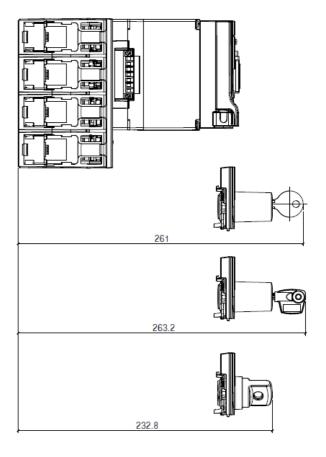

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;








Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

3.2 Weights

	Weights (Kg)
Configuration	4P
Circuit breaker	2.5
Plug-in*	4.5
Draw-out**	2.5
Interlock*	0.35
Rear interlock (for plug-in/draw-out version)*	5
Motor operator*	1
* to add to deveice weight	
* to add to deveice and plug-in weights	

4. OVERVIEW

4.1 Supplied with:

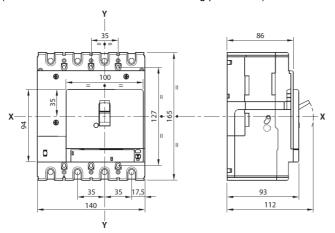
- 4 fixing screws
- 8 screws for connections
- 3 phase insulators

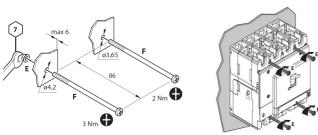
5. ELECTRICAL CONNECTIONS

5.1 Mounting possibilities

On plate:

- Vertical
- Horizontal
- · Supply invertor type

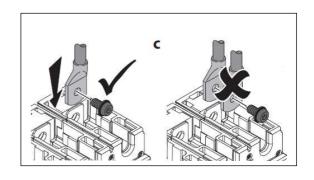

Reference(s):


from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

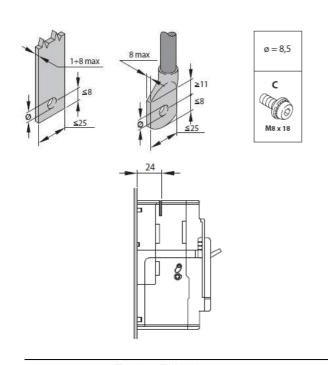
5.2 Mounting

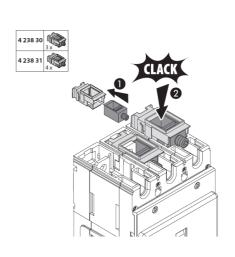
Busbars/cable lugs:

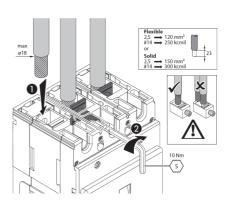
(see instruction sheet for detailed mounting procedures)



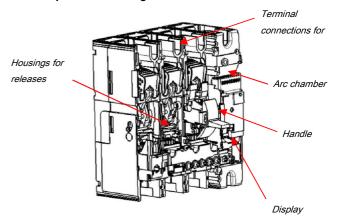
CLACK


CLACK


CLACK


10 Nm

Cables:


Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

6. ELECTRICAL AND MECHANICAL CHARACTERISTICS

Circuit Breaker	DPX ³ 250 HP S10 F/N + RCD (36kA, 50kA)
Rated current (A)	40-100-160-250
Poles	3 - 4
Pole pitch (mm)	35
Rated insulation voltage (50/60Hz) U _I (V)	500
Rated operating voltage (50/60Hz) U _e (V)	500
Rated impulse withstand current U _{imp} (kV)	6
Rated frequency (Hz)	50 - 60
Operating temperature (°C)	-25 ÷ 70
Mechanical endurance (cycles)	12000
Mechanical endurance with motor control (cycles)	12000
Electrical endurance at In (cycles)	6000
Electrical endurance at 0.5 In (cycles)	6000
Utilization category	A
Suitable for isolation	Yes
Type of protection	Electronic (with display)
Thermal type protection	Adjustable (Mem On/Off)
Ability to enable thermal protection	On/Off
Thermal adjustment I _r [x I _n]	0,2÷1 (steps 1A)
Thermal adjustment t _r [s]	0,04÷15 (steps 40ms, @6lr)
Thermal time tripping at 2xin (single pole) [s]	0,44s±20% if tr = 0,04s@6lr
Magnetic type protection	Adjustable
Ability to enable magnetic protection	On/Off
Magnetic adjustment I _{sd} [x I _r]	1,5÷10 (steps 1A)
Time adjustement t _{sd} (t=k o l²t=k) [s]	40÷480 (steps 40ms)
Minimum release single pole	1 l _{sd}
Istantaneous electronic adjustment I _I	2÷15 (steps 1A) & lsf=3250 A
Neutral protection for 4P (%lth of phase pole)	0FF-50-100-150-200
Earth leakage trip type	Integrated
Ability to enable earth leakage trip	=
Earth leakage trip l∆n /l₀ [A /x ln]	0,03 - 0,3 - 1 - 3 / -
Earth leakage trip Δt / t _g (t=k o l²t=k) [s]	0 - 0,3 - 1 - 3 / -
Dimensions (W x H x D) (mm)	140 x 165 x 86 (4P)

6.1 Main parts constituting the circuit breaker

6.2 Breaking capacity (kA)

		Breaking capacity (kA) & I _{cs}		
		4P		
	U _e /I _{cu} (I _{cu} letter)	36kA (F)	50kA (N)	
	220/240 V AC	70	90	
	380/415 V AC	36	50	
IEC 60947-2	440/460 V AC	25	30	
	480/500 V AC	16	18	
	I _{cs} (% I _{cu})	100	100	
	Rated making	g capacity under sl	hort circuit I _{cm}	
	I _{cm} (kA) at 415V	76.5	105	
NEMA AB-1	220/240 V AC	70	90	
IVEIVIA AB-1	480/500 V AC	16	18	

6.3 Rated current (In)

	Phases limit trip current			
	thermal (I _r)		magne	etic (I _{sd})
In (A)	0.2 x I _n	1 x In	min	max
40	8	40	60	400
100	20	100	150	1000
160	32	160	240	1600
250	50	250 375 250		2500

6.3 Load operations

Force on handle	N
Opening operation	63,5
Closing operation	66
Restore operation	86,5

6.4 Electrodynamic forces

The table below shows an indication of suggested distances to keep between the breaker and the first fixing point of the conductor and bars in order to reduce the effects of the electrodynamic stresses that may be created during a short circuit. In the realization of anchorage system it is recommend the use of isolators suitable for the type of conductor used and the operating voltage.

I _{cc} (kA)	Maximum Distance (mm)
36	350
50	300

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

According to conductor type and bar system (except Legrand bar kits), the choice of the distance to keep is to be calibrated by the installer. Also installer must take into account the weight of the conductors so that this does not affect the electrical junction between the conductor itself and the connection point.

6.5 Power losses per pole under In

Circuit breaker

	Power losses per pole (W)				
In (A)	40 100 160 250				
Cage terminals	0.54 3.37 8.63 21.07				
Lugs	0.49 3.08 7.88 19.25				
Spreaders	0.41	2.59	6.64	16.21	
Rear terminals	0.51 3.18 8.13 19.86				

Note: power losses in the table above are referred and measured as described in the standard IEC 60947-2 (Annex G) for circuit-breakers. Values in the table are referred to a single phase.

6.6 DERATINGS

according to IEC/EN 60947-1

6.6.1 Temperature

Rated current and his adjustment has to be considered relating to a rise or fall of ambient temperature and to a different version or installation conditions. The table below indicates the maximum long-time (LT) protection setting depending on the ambient temperature.

	Temperature Ta (°C)							
I _n (A)	40	40 50 60 70						
40	40	40	40	40				
100	100	100	100	95				
160	160	160	160	155				
250	250	250	210	190				

For derating temperature with other configurations, see table A.

6.6.2 Specific condition use

Climatic conditions

according to IEC/EN 60947-1 Annex Q, Cat. F subject to temperature, humidity, vibration, shock and salt mist.

Pollution degree

for DPX³ 250 HP circuit breakers, degree 3, according to IEC/EN 60947-2

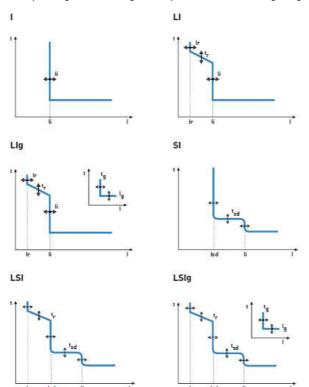
6.6.3 Altitude

Altitude derating for DPX3

Altitude (m)	2000	3000	4000	5000
U _e (V)	500	430	380	330
I _n (A)	1 x I _n	0.98 x I _n	0.93 x I _n	0.9 x I _n

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;


7.ELECTRONIC PROTECTION S10

Electronic DPX³ circuit breakers equipped with S10 protection units are fully configurable. They can be used to adapt settings as closely as possible to the requirements of your installation, either by enabling/disabling the different protection devices (tripping time delays and currents), or by altering the different trip thresholds.

The tripping curve is therefore fully customised to suit the real-life conditions of each project.

Thanks to the internal battery, the protection unit can be set even if the circuit breaker is de-energised. Tests and troubleshooting can be done directly via the circuit breaker LCD screens.

A single circuit breaker can operate according to different tripping curves depending on the settings, as explained in the following images:

- I_r Long time protection against overloads
- t_r Long time protection delay
- ullet Short time protection against short circuits
- t_{sd} Short time protection delay
- Instantaneous protection against high-intensity short-Circuits
- Ig Earth fault current
- t_g Earth fault current protection delay
- IN Neutral protection

See relative instruction sheet for details

Settings on DPX³ 250 HP, DPX³ 630 and DPX³ 1600 S10 electronic protection

There are 2 options for configuring setting: locally on the circuit breaker or on a PC, smartphone or tablet:

Settings	DPX ³ 250 HP, DPX ³ 630 and DPX ³ 1600 with S10 electronic protection			
Jettings	Locally on the device	By software or app		
I _r	0.2 to 1 x I _n , in steps of 1 A	0.2 to 1 x I _n - OFF, in steps of 1 A		
t _d	DPX ³ 250 HP: 3 - 5 - 10 - 15 s DPX ³ 630 and 1600: 3 to 30 s (7 steps)	DPX ³ 250 HP: 3 to 15 s, in steps of 40 ms DPX ³ 630 and 1600: 3 to 30 s in steps of 40 ms 1.5 x I, to 10 x I _n - OFF, in steps of 1 A		
¹sa	3 to 10 x I _r , in steps of I _r	1.5 x if to 10 x in Off, in steps of 1 A		
t _{sd} (t=k, I2t=k)	40 to 480 ms (7 steps)	40 to 480 ms, in steps of 40 ms		
I _i (t=k)	-	2 to 15 x I _n - OFF, in steps of 1 A		
lg	0.2 to 1 x I _n , in steps of 0.1 x I _n	0.2 to 1 x I _n - OFF, in steps of 0.1 x I _n		
t _g (t=k, I2t=k)	80 to 480 ms and 1 s (6 steps)	80 ms to 1 s, in steps of 40 ms		

There are several ways to configure the various settings: directly on the protection units (using the +/- and >/< buttons on the front face), on a PC with Power Control Station software installed, or on a tablet or smartphone via the EnerUp+ Project app.

Power Control Station software for PC and the EnerUp+ Project app for smartphone/tablet can be used to exchange data with the DPX³ S10 protection unit.

The software and app can be used to:

- monitor the status of the circuit breaker
- display information (firmware and device versions, alarms, measurements, parameters, fault log, settings)
- configure the different protection devices [1]
- update the protection unit firmware [2]
- generate reports based on the data stored and read by the protection unit [1]
- run diagnostic tests
- upload data linked to your profile and installation to the Cloud (with the EnerUp + Project app only)

[1] With the Power Control Station software only

[2] For Legrand technical support via the Power Control Station software only

Together with above protections, activated in case of electric faults, the trip unit also integrates self-protection for:

- Over temperature: in case the internal temperature of protection unit exceed 95°C;
- Auto diagnostics: in case embedded watchdog circuit detects internal malfunctions, which could compromise the correct working of microcontroller.

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

With electronic DPX³ 250 HP, 630 and 1600 S10 with integrated measurement, it is very easy to monitor the parameters and consumption of the different circuits in the installation.

Electronic DPX³ circuit breakers equipped with S10 protection units with integrated measurement can be used to display the current, voltage, active and reactive power, frequency and power factor values, as well as the energy consumption.

Alarms can be programmed on some parameters, including minimum and maximum voltage, phase unbalance, and minimum and maximum frequency.

The measured values are displayed directly on the LCD screen on the front of the equipment.

The measurement data can also be displayed on a PC equipped with Power Control Station software or remotely on a smartphone or tablet via the EnerUp+ Project app.

In the electronic unit protection, an energy metering central unit is integrated.

The possible parameters that can be measured are listed in the following table:

Measured	UNIT	DESCRIPTION		
I_1	Α	L1 realtime measured value		
l ₂	Α	L2 realtime measured value		
l ₃	Α	L3 realtime measured value		
I _N (4P)	Α	N realtime measured value		
I _G	Α	G realtime measured value		
U ₁₂ U ₂₃ U ₃₁ (3P)	٧	Phase to Phase Voltage		
V ₁₂ V ₂₃ V ₃₁ (4P)	٧	Voltage		
Freq.	Hz	Frequency		
P _{Tot}	kW	Active Power		
Q _{Tot}	kvar	Reactive Power		
PF		Power Factor		
$E_p oldsymbol{\downarrow}$	kWh	Consumed active energy		
E _p ↑	kWh	Returned active energy		
$E_q oldsymbol{\downarrow}$	kvar h	Consumed reactive energy		
E _q ↑	Kvar h	Returned reactive energy		
THDU ₁₂ /THDU ₂₃ /THDU ₃₁ (3P)	%	Chained Voltage THD		
THDV _{1N} /THDV _{2N} /THDV _{3N} (4P)	%	Voltage THD		
THDI ₁ /THDI ₂ /THDI ₃ /THDI _N	%	Current THD		
MEM	A - ℃	Cause of the last intervention and its value		

Function performance class according to IEC 61557-12

Function symbol	Performance class	Measurement range			Ot		plementa teristics	ary	
			DPX ³	250A			I _{max}	PMD	
I _n		40A	100A	160A	250A	40A	100A	160A	250A
Р	2	0.05kW	0.05kW	0.05kW	0.05kW	48A	120A	192A	300A
P	2	58kW	144kW	230kW	360kW	I _b =	40A, U _n =4	00V, f _n =50	Hz
Qa, Q,	2	0.1kvar	0.1kvar	0.1kvar	0.1kvar	48A	120A	192A	300A
Qa, Q _v	2	58kW	144kW	230kW	360kW	I _b =	40A, U _n =4	00V, f _n =50	Hz
_	2		0 000	9 GWh		48A	120A	192A	300A
Ea	2		0999	9 GWII		I _b =250A, U _n =400V, f _n =50Hz			
ErA, E,,	2	0.0000		n GW/h		48A	120A	192A	300A
EIA, E _{rV}	2	09999 GW/h			I _b =40A, U _n =400V, f _n =50Hz				
f	0.1	5060 Hz					-		
		2A	2A	2A	2A	48A	120A	192A	300A
I	1	48A	120A	192A	300A	I _b =250A, U _n =400V, f _n =50Hz			0Hz
		2A	2A	2A	2A	48A	120A	192A	300A
I _N	1	48A	120A	192A	300A	I _b =2	250A, U _n =4	400V, f _n =5	0Hz
U	0.5	88690V -							
	0.5					48A	120A	192A	300A
P _{FV}	P _{FV} 0.5		-			I _b =2	250A, U _n =4	400V, f _n =5	0Hz
THDu	5	110690V -							
TUD	5	40A	40A	40A	40A				
THDi	э	40A	100A	160A	250A	-			

General remarks on protection unit

The protection units S2/Sg are normally supplied by the current transformers (CTs) and the internal voltage supply.

When the current flowing through the circuit breaker is lower than 12% of the maximum power (20% of In for single phase load) the internal voltage supply assures the following basic functions of protection unit: RCD protection, LED status, display indication (without backlight) and RCD diagnostic trip test (T button).

Instead, over the 12% of the maximum power (20% of In for single phase load), the additional power provided by current transformers ensures the complete functions of the protection unit, included diagnostic functions (e.g. trip test). Display backlight and integrated measure (if available) are instead guaranteed starting from 20% of the maximum power (35% of In for single phase load), in absence of any other supply. In any case the external power supply is strongly recommended for the correct working of measurement, as well as RS485 communication.

To ensure the same performance when the load is less than 12% of the maximum power (20% of In for single phase load) to grant complete functions, one of the following optional power supplies can be used:

- external Auxiliary power supplier or, alternatively, Modbus/EMS communication interface;
- power supply temporarily connected to frontal USB socket, connected to a 5V DC power bank, Dongle BLE or PC.

Reference(s):

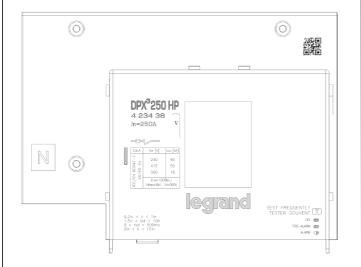
from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

8. CONFORMITY

DPX³ HP range of product concerning circuit-breakers exceed compliance with the IEC/EN standard 60947-2.

Certification available by IECEE CB-scheme or LOVAG Compliance scheme.

DPX³ HP respect the European Directives REACh, RoHS, RAEE.

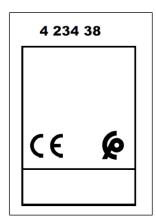

For specific information, please contact Legrand support.

8.1 Marking

Product (circuit breakers) are provided with labelling in full conformity to the referred standard and directives requirements by laser or sticker labels (for illustrative purposes only) as:

Product laser label on front

- -Manufacturer responsible
- -Denomination, type product, code
- -Standard conformity
- -Standard characteristics declared
- -Coloured identification of Icu at 415V


Product sticker label on side

- -Manufacturer responsible
- -Denomination and type product
- -Standard conformity
- -Mark/Licence (if any)
- -Directive requirements
- -Bar code identification product
- -Manufacturing Country

Mark sticker label on side

- -Product code
- -Mark/Licence (if any)
- -Country deviation, if any

Packaging sticker label

- -Manufacturer responsible
- -Denomination and type product
- -Mark/Licence (if any)
- -Directive requirements
- -Bar code identification product

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

9. EQUIPMENTS AND ACCESSORIES

9.1 Releases (for DPX3 125/250 HP and DPX3 160/250)

shunt releases with voltage:

12 Vac and dc	ref. 4 210 12
24 Vac and dc	ref. 4 210 13
48 Vac and dc	ref. 4 210 14
110÷130 Vac	ref. 4 210 15
220÷277 Vac	ref. 4 210 16
380÷480 Vac	ref. 4 210 17

Maximum power = 400 VA / W

undervoltage releases with voltage:

12 Vac and dc	ref. 4 210 18
24 Vac and dc	ref. 4 210 19
48 Vac and dc	ref. 4 210 20
110÷130 Vac and dc	ref. 4 210 21
220÷240 Vac	ref. 4 210 22
277 Vac	ref. 4 210 23
380÷415 Vac	ref. 4 210 24
440÷480 Vac	ref. 4 210 25

Maximum power = 4 VA

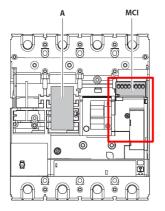
Circuit breaker opening time < 50 ms

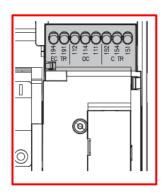
UVR releases can be used on DPX3 125/250 HP starting from batch

time-lag undervoltage releases (800 ms)

Time-lag modules with voltage:

230 V ac ref. 0 261 90 400 V ac ref. 0 261 91

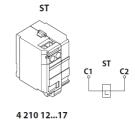

Release ref. 4 210 98


(to be equipped with a time-lag module 0 261 90/91)

9.2 Auxiliary contacts

For version of DPX3 250 HP electronic version, with earth leakage module, auxiliary contacts are integrated inside module M.C.I (see instruction sheet for details).

Here a connection scheme to get auxiliary functionality:


TRIP STATUS (CTR)	151 Common contact 152 Normal close contact 154 Normal open contact	154 151
OPEN/CLOSE STATUS (OC)	111 Common contact 112 Normal close contact 114 Normal open contact	114
TRIP RCD (ECTR)	191 Common contact 194 Normal open contact	194 191

CTR	152-151	154-151
OFF _		_/-
TRIP =	_/-	
ON O		_/-

oc	112-111	114-111	
OFF			
TRIP			
ON O		7	

	Α
UVR	✓
ST	(max 1)

To get more information on auxiliary mounting procedures, please refer to product instruction sheet.

9.3 Universal keylocks

These keylocks must be used for all the accessories that can be locked:

- rotary handle
- motor operator
- plug-in mechanism
- draw-out mechanism

For each of these, a specific accessory (indicated in the specific section of this datasheet) must be added in order to get the complete locking kits for the specific application.

1 lock + 1 flat key with random mapping ref. 4 238 80 1 lock + 1 flat key with fixed mapping (EL43525) ref. 4 238 81 1 lock + 1 flat key with fixed mapping (EL43363) ref. 4 238 82

1 lock + 1 star key with random mapping ref. 4 238 83

Technical sheet: F04057EN/00 Update: 25/10/2023 Creation: 25/10/2023

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

9.4 Rotary handles

Direct on DPX3 (with auxiliary option)

• Standard (black) ref. 4 238 00

• For emergency use (red / yellow) ref. 4 238 01

Vari-depth handle IP55 (with auxiliary option)

• Standard (black) *ref. 4 238 02*

For emergency use (red / yellow) ref. 4 238 03

Locking accessories (for rotary handle with auxiliary option)

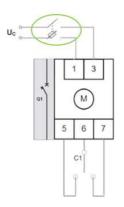
• Key lock accessory for direct rotary handle ref. 4 238 04

 Key lock accessory for vari-depth rotary handle ref. 4 238 05 (ref. 4 238 05 is compatible with DPX³ 125 HP also)

Ref. 4 238 04 and 4 238 05 must be used with universal keylocks to get the complete locking kit for rotary handle

9.5 Motor operators

For synchronized operations (energy storage type):


24 Vac and dc
 48 Vac and dc
 110 Vac
 230 Vac
 ref. 4 238 40
 ref. 4 238 41
 ref. 4 238 42
 ref. 4 238 43

Technical parameters:

Malhana	Property	AC		DC	
Voltage	ge Property		Closing	Opening	Closing
	Maximum inrush power (VA)	75	430	55	320
24V ac/dc	Rated power (VA)	45	1	20	-
24V ac/uc	Absorption time (s)	2.8	0.01	3.3	0.01
	Operating current time (s)	1.1	0.03	1.2	0.03
	Maximum inrush power (VA)	85	1000	70	690
10\/ ac/dc	Rated power (VA)	65	-	15	-
Absorption time (s) Operating current time (s)		3.3	0.006	3.8	0.006
		1.1	0.02	1.3	0.02
	Maximum inrush power (VA)	95	600	-	-
110V ac	Rated power (VA)		1	-	-
110V ac	Absorption time (s)		0.02	-	-
Operating current time (s)		1.0	0.03	-	-
	Maximum inrush power (VA)		460	-	-
2201/20	Rated power (VA)	70	-	-	-
250V ac	Absorption time (s) Operating current time (s)		0.08	-	-
			0.03	-	-

It is necessary to foresee a protection device (e.g. fuse) along the motor operator power line. The correct size of the fuse depends on the motor version and on the number of users.

Here a schematic example:

Locking accessory (for motor operator)

Padlock (for motor operator locking) ref. 4 238 46

• Key lock accessory for motor operator ref. 4 238 45

Ref. 4 238 45 must be used with universal keylocks to get the complete locking kit for motor operator

9.6 Mechanical accessories

Padlock (for locking in "OPEN" position) ref. 4 210 49
 (ref. 4 210 49 is compatible with DPX³ 125 HP and DPX³ 160/250)

Sealable terminal shields:
 Set of 3 (for

Set of 3 (for 4P) ref. 4 238 24

Insulated shields:

o Set of 3 (for 4P) ref. 4 238 35

(ref. 4 238 35 is compatible with DPX3 125 HP also)

9.7 Connection accessories

Cage terminals

 Set of 4 terminals for cables 150 mm² max (rigid) ref. 4 238 31 or 120 mm² max (flexible) Cu/Al

Spreaders (incoming or outcoming):

Set of 4 (for 4P) *ref. 6 250 18*

Rear terminals (incoming or outcoming):

• Set of 4 (for 4P) ref. 4 238 22

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

9.8 Plug-in version

(A plug-in is a DPX 3 250 HP fitted with special terminals and mounted on a plug-in base)

Rases

(for plug-in and draw-out versions for DPX3 250 HP and DPX3-I 250 HP)

Plug-in accessories

Locking accessory (for plug-in)

Key lock accessory for plug-in

ref. 4 238 63

Ref. 4 238 63 must be used with universal keylocks to get the complete locking kit for plug-in version

9.9 Draw-out version

(A DPX³ 250 HP draw-out version is a plug-in DPX³ 250 HP fitted with a "Debro-lift" mechanism which can be used to withdraw the breaker while keeping it on its base)

"Debro-lift" mechanism

(supplied with a rigid slide and handle for drawing-out)

• transformation kit for 4P ref. 4 238 61

Fontal masks for draw-out version

(to provide in addition to debro-lift mechanism according to accessory mounted)

- Frontal module, with frontal mask (3P and 4P) ref. 4 238 55 (if neither motor operator nor rotary handle are mounted)
- Frontal mask for motor operator (3P and 4P) ref. 4 238 56

Locking accessory (for draw-out)

Padlock for draw-out position ref. 4 238 64
Key lock accessory for draw-out ref. 4 238 62

Ref. 4 238 62 must be used with universal keylocks to get the complete locking kit for draw-out version

Auxiliary contacts

Automatic auxiliary contacts for draw-out version
 6 contact connector (under sliding contacts)
 ref. 4 222 30
 ref. 0 098 19

(Ref. 0 098 19 can be used with both plug-in and draw-out version)

9.10 Interlock mechanism

(for interlocking 2 DPX3 125 HP or 2 DPX3 250 HP breakers)

No frame mixing in interlock mechanism

 Interlock mechanism – standard version ref. 4 238 27 (for fixed version DPX³ 125 HP and DPX³ 250 HP)

Interlock mechanism – for electronic module ref. 4 238 28 (for fixed version DPX³ 125 HP and DPX³ 250 HP)

Interlock plate for DPX³ 250 HP
 ref. 4 238 26

 Rear interlock mechanism ref. 4 238 29 (for DPX³ 250 HP plug-in and/or draw-out version)

If used ref. 0 098 19, maximum 1 set

9.11 Specific accessories for electronic version Auxiliary power supply

· For supplying electronic units

ref. 4 210 83

Is used to supply DPX³ electronic circuit breakers S2/Sg with / without earth leakage module and with / without energy metering central unit. It is mandatory in case of electronic breakers with integrated measure and not interconnected in a supervision system (MODBUS network not requested) to correctly manage the measure functions

Technical characteristics:

- Input voltage: 24V ad/dc (+/- 10%)
- Enclosure: 2 DIN modules
- Output: up to 250mA (to supply many circuit breakers according to the following table):

4 210 83	DPX ³ 250 / 630 / 1600	[mA]
	Electronic (S2/Sg)	50
I MAY - 050 A	Electronic with power metering (S2/Sg)	62.5
I _{out} MAX = 250 mA	Electronic with residual current protection (S2)	50
	Electronic with residual current protection and power metering (S2)	62.5

According to single absorptions, it can be possible to connect more than one breaker

MODBUS communication

• RS485 MODBUS communication interface

ref. 4 210 75

Is used for sharing on MODBUS network all information managed by DPX 3 electronic circuit breakers S2/Sg with / without earth leakage module and with / without energy metering central unit.

Technical characteristics:

- USB local PC connection
- Input voltage: 24V ad/dc (+/- 10%)
- Enclosure: 1 DIN modules
- MODBUS address configuration / transmission mode / transmission speed by physic configurators
- Output relay (220V 0,2A): to signal tripped position

Consumption: 90mA

It is possible to connect only one breaker to the interface.

In case of use of MODBUS interface 4 210 75, the external power supply module 4 210 83 is not necessary because the external power is already provided by the MODBUS module

Web server

 For remote viewing of values collected on electricity meters and multi-function measuring units

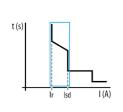
32 metering points ref. 0 261 78
Unlimited metering points ref. 0 261 79

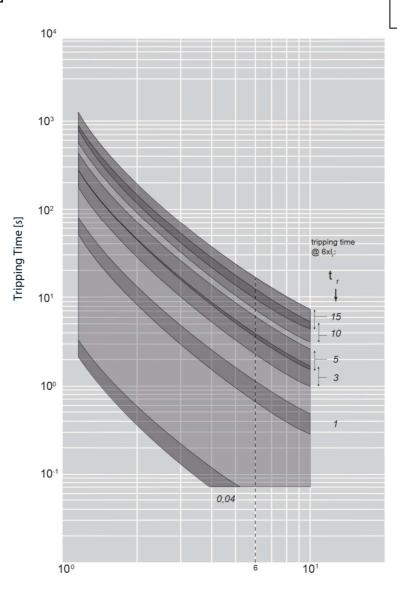
Software

To display values collected on electricity meters and multifunction measuring units on a PC connected to the network 32 metering points ref. 0 261 88 Unlimited metering points ref. 0 261 89

Touch screen

 To show data collected by DX³, DPX³, DMX³, EMDX³. It can manage up to 8 devices ref. 0 261 56

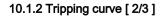

Reference(s):


from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

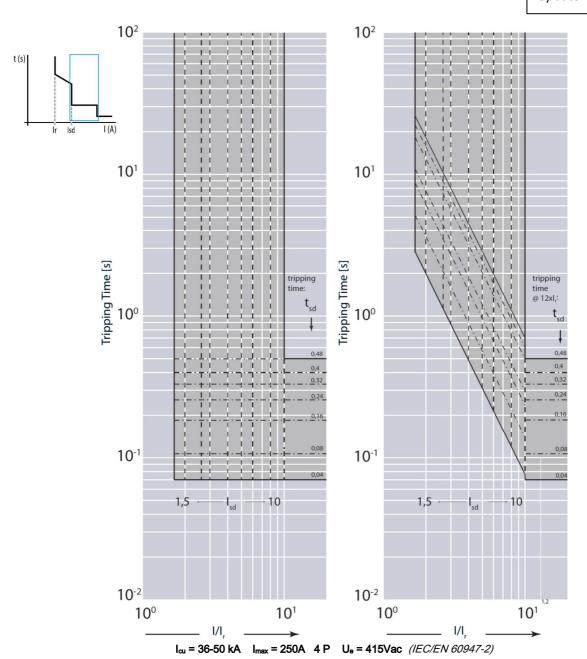
10. CURVES

10.1.1 Tripping curve [1/3]

Update: 16/11/2022



 $\label{eq:Indian} I/I_{_{\Gamma}}$ $I_{\text{cu}} = 36\text{--}50 \text{ kA} \quad I_{\text{max}} = 250 \text{A} \quad 4 \text{ P} \quad U_{\text{e}} = 415 \text{Vac} \quad \textit{(IEC/EN 60947-2)}$

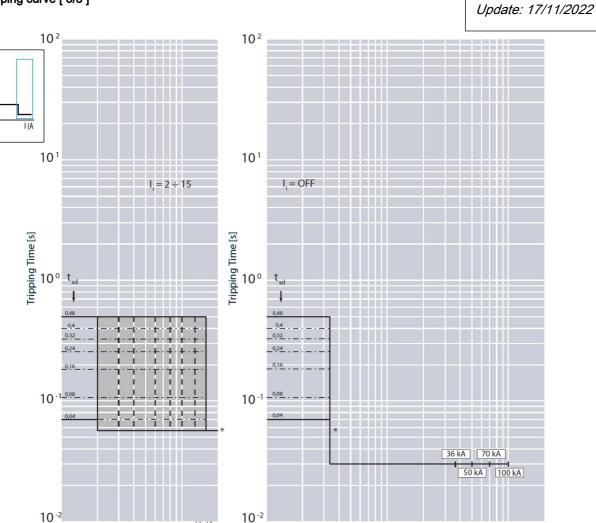

Value	Description		
t	time		
I	current		
l _r	long time setting current		
t _r	long time delay		
Isd	short time setting current		
tsd	short time delay		
li	li instantaneous release		
Icu rated ultimate short-circuit breaking capaci			
$I^2t = K$	constant pass-through energy setting		
t = K	constant tripping time setting		
	long time trip curve		
	short time trip curve		
Current tolerance	10% up to I_{sd} ; 20% up to I_i		

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;


Update: 17/11/2022

Value	Description					
t	time					
I	current					
l _r	long time setting current					
t _r	long time delay					
Isd	short time setting current					
tsd	short time delay					
li	instantaneous release					
lcu	rated ultimate short-circuit breaking capacity					
$I^2t = K$	constant pass-through energy setting					
t = K	constant tripping time setting					
	long time trip curve					
	short time trip curve					
Current tolerance	10% up to I_{sd} ; 20% up to I_i					


Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

10°

t (s)

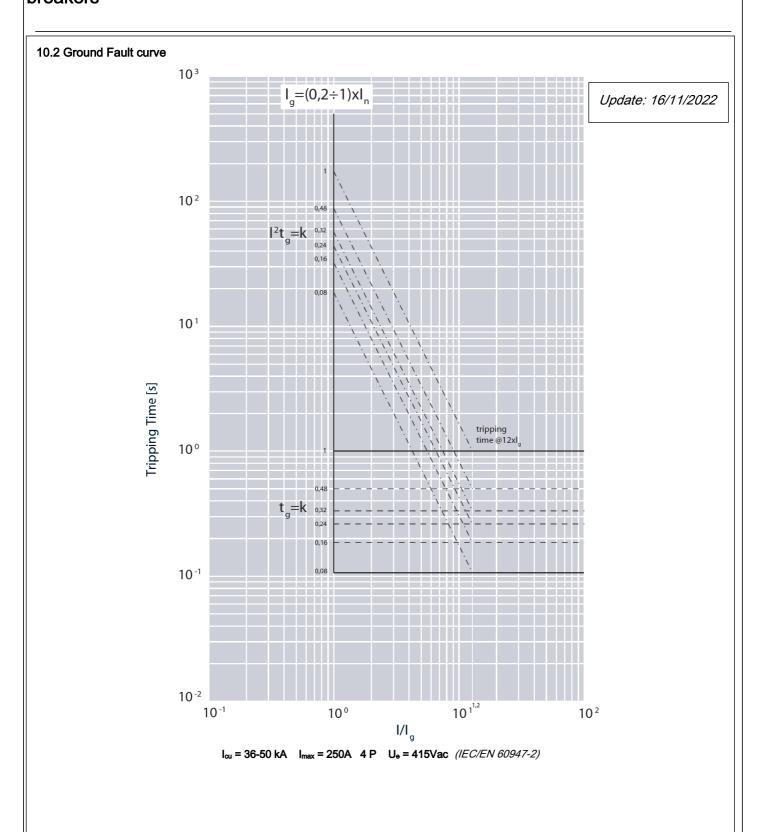
 I_{cu} = 36-50 kA I_{max} = 250A 4 P U_{e} = 415Vac (IEC/EN 60947-2)

10¹

I[kA]

10²

10°

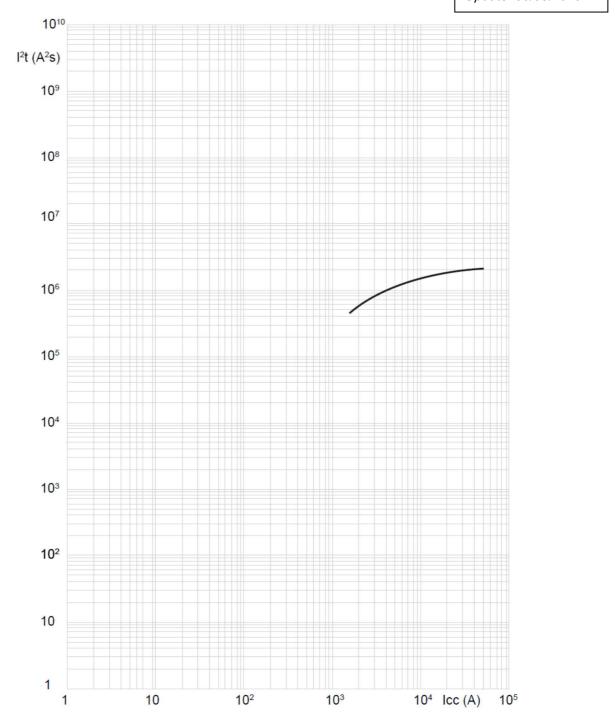

10¹

 I/I_n

	5 · · ·
Value	Description
t	time
I	current
l _r	long time setting current
t _r	long time delay
Isd	short time setting current
tsd	short time delay
li	instantaneous release
lcu	rated ultimate short-circuit breaking capacity
I ² t = K	constant pass-through energy setting
t = K	constant tripping time setting
	long time trip curve
	short time trip curve
Current tolerance	10% up to I _{sd} ; 20% up to I _i

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;



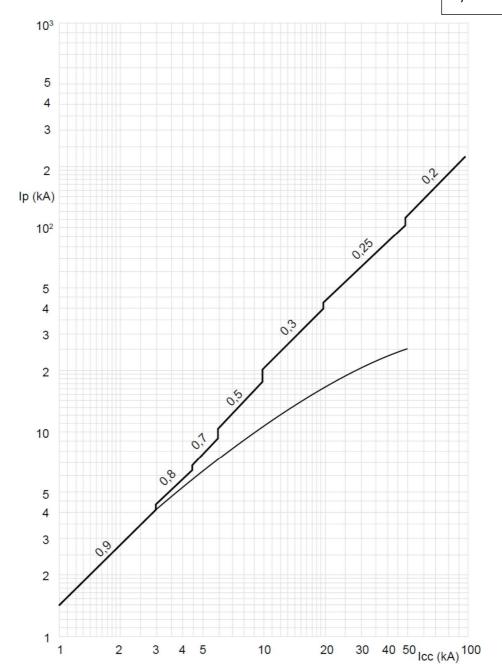
Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

10.3 Pass-through specific energy characteristic curve

Update: 30/08/2019

 I_{cu} = 36-50 kA I_{max} = 250A 4 P U_{e} = 415Vac (IEC/EN 60947-2)

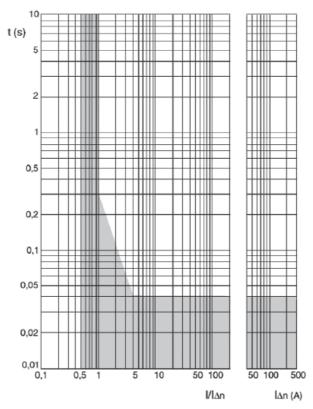

Value	Description						
I _{cc}	short circuit current						
I ² t (A ² s)	pass-through specific energy						

Reference(s):

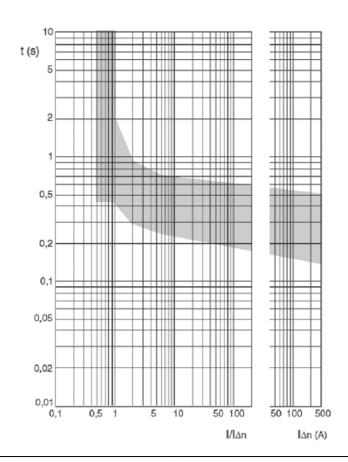
from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

10.4 Cut-off peak current characteristic curve

Update: 30/08/2019

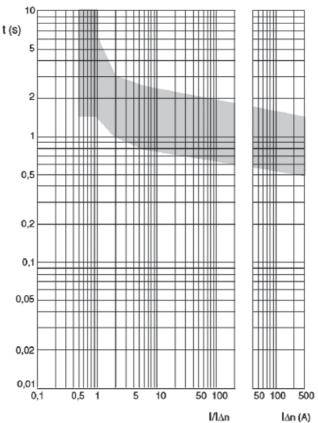

 $I_{cu} = 36-50 \text{ kA}$ $I_{max} = 250 \text{A}$ 4 P $U_{e} = 415 \text{Vac}$ (IEC/EN 60947-2)

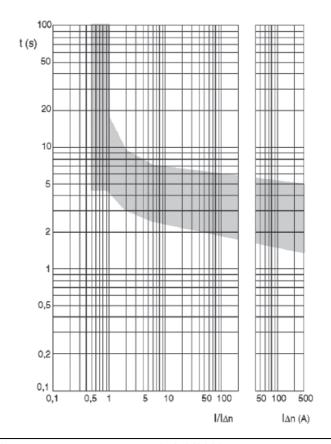
Value	Description					
I _{cc}	estimated short circuit symmetrical current (RMS value)					
I _p	maximum short circuit peak current					
	maximum prospective short circuit peak current					
	corresponding at the power factor					
maximum real peak short circuit current						


Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

10.5.1 Earth leakage curves, instantaneous


10.5.2 Earth leakage curves, time delay = 0.3 s


Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

10.5.3 Earth leakage curves, time delay = 1 s

10.5.4 Earth leakage curves, time delay = 3 s

Reference(s):

from 4 234 15 to 4 234 18; from 4 234 35 to 4 234 38; from 4 234 75 to 4 234 78; from 4 234 95 to 4 234 98;

A) Derating Temperature and configurations

Ambient temperature										
		30 °C		40 °C		50 °C		60 °C		°C
Fixed version	I _{max} (A)	I_r / I_n								
Cage terminals, flexible cable	238	0.95	225	0.90	200	0.80	175	0.70	163	0.65
Cage terminals, flexible cable + sealable terminal shields	238	0.95	225	0.90	200	0.80	175	0.70	163	0.65
Spreaders, flexible cable	250	1	213	0.85	200	0.80	175	0.70	163	0.65
Rear terminals, flexible cable	238	0.95	200	0.80	188	0.75	163	0.65	150	0.60
Plug-in/draw-out version		I _r / I _n	I _{max} (A)	I _r / I _n	I _{max} (A)	I _r / I _n	I _{max} (A)	I _r / I _n	I _{max} (A)	I _r / I _n
Cage terminals, flexible cable	250	1	238	0.95	238	0.95	233	0.93	225	0.90

For further technical information, please contact Legrand technical support.

Data indicated in this document refers exclusively to test conditions according to product standards, unless otherwise indicated in the documentation.

For the different conditions of use of the product, inside electrical equipment or in any case inserted in the installation context, refer to the regulatory requirements of the equipment, local regulations and design specifications of the system.